Non-Euclidean geometry and games

A hexagon in the hyperbolic plane can have six right angles.

Non-Euclidean geometry

The meridians on Earth are straight (and they eventually meet in the poles), while the parallels (except the equator) are not straight. The picture above shows an analogous situation in the hyperbolic plane. Red lines (“meridians”) are straight and they diverge, the central green line (“equator”) is straight, but the other green lines (“parallels”) are not. The red lines are all straight, and the red segments between two green lines are all of the same length; the picture may suggest that this is not the case, but this is an artifact of the projection used (it is impossible to render non-Euclidean geometry on a flat picture without distortion).
  • Look for parallel lines. In Euclidean geometry, they are in a constant distances from each other. In spherical geometry, they converge, and in hyperbolic geometry, they diverge.
  • Look at the angles of a triangle. In Euclidean geometry, they sum up to 180 degrees. In spherical geometry, they sum up to more (for example, take the North Pole, and two vertices on the equator as the vertices). In hyperbolic geometry, they sum up to less.
  • An easy way to tell whether a game uses truly non-Euclidean geometry is to look for rectangles. In non-Euclidean geometry there are no rectangles, anything that looks a bit like a rectangle actually has its angles smaller than 90 degrees, or its edges are curved. So, if you see rectangles, the game is (probably) not non-Euclidean.
  • In Euclidean geometry, a circle of radius r has perimeter 2πr. In spherical geometry, it is 2πsin(r) (which is bounded), and in hyperbolic geometry, it is 2πsinh(r) (which grows exponentially). In a three-dimensional hyperbolic world with “absolute unit” of 1m, a ball with radius 100m will have greater volume than the observable Universe!
  • In truly non-Euclidean 3D games and simulations the parallax works different. In Euclidean space, things that are far away from you (stars, distant mountains) are seen in roughly the same place as you move. This changes in non-Euclidean geometries: in hyperbolic space, everything moves, while other non-Euclidean geometries are even weirder.


When the distance is not the Euclidean metric

Artists associated with non-Euclidean geometry

Games using non-Euclidean geometry

  • our HyperRogue (free/paid) — a puzzle roguelike taking place in the hyperbolic plane (i.e., two-dimensional hyperbolic geometry). This uses a hyperbolic plane (without any topological surgery or boundary), so its world is larger than No Man’s Sky, MineCraft, or anything Euclidean. While HyperRogue shines the most as the puzzle roguelike it was originally designed as (2D, top-down, turn-based, grid-based), its non-Euclidean engine and unique world are a great testing ground for various experiments with game genres or other weird geometries. So it can be played as, say, a first-person shooter or racing game in a three-dimensional anisotropic geometries.
  • Hyperbolica (paid) — a hyperbolic ‘’walking simulator’’ with polished graphics and some mini-games in hyperbolic and spherical geometry (first-person shooter, racing, etc.).
  • Bringris (paid) — our non-Euclidean falling block game (similar to Tetris), made with the HyperRogue engine. It uses a product geometry (hyperbolic 2D manifolds stacked in a Euclidean way).
  • MagicTile — like Rubik’s Cube, but in non-Euclidean 2D manifolds.
  • Hyperbolic Maze — a maze in a hyperbolic 2D manifold.
  • Hypernom — this uses three-dimensional spherical geometry.
  • Hyperbolic Games — simple games (Sudoku, maze, etc.) in 2D hyperbolic manifolds.
  • Warped Mines — Minesweeper in hyperbolic plane.
  • Nil Rider — a game in Nil geometry. This is a three-dimensional geometry that has no 2D counterpart — with three dimensions we can do new cool stuff! (Nil is a Thurston geometry, some people would restrict “non-Euclidean” to only hyperbolic and spherical geometry.)
  • Sokyokuban — Sokoban-like in the hyperbolic plane, playable in a browser. Holonomy makes it interesting. (See also this for another puzzle based on holonomy.)
  • H2Snake is a hyperbolic Snake game.
  • The Hyperbolic Maze Demo by Bernie Freidin seems to be the oldest hyperbolic game. There are some other old small games, like Henri’s Reef by Eric Bergstrome.
  • Hexagrid, Esfera Chess, and Geodessey are 2D spherical games. Just like HyperRogue, they are grid-based games, and use the Goldberg-Coxeter construction to obtain more cells than a regular tiling would allow.
  • Henry Segerman has designed several 3D printed puzzles based on non-Euclidean geometry and topology. The holonomy maze is based on the concept of holonomy in spherical geometry. There are also variants of the classic Fifteen puzzle, based on non-Euclidean geometry and topology. Our computer simulations of these puzzles, and links to Henry’s videos can be found here.

Interactive demos using non-Euclidean geometry

  • Curved Spaces — fly through three-dimensional non-Euclidean manifolds. Probably the oldest three-dimensional non-Euclidean demo.
  • Non-Euclidean VR (H3) — this is three-dimensional hyperbolic geometry. See also H2xR (hyperbolic in some dimensions and Euclidean in other dimensions), and the new version.
  • Three-dimensional space — this project lets you explore Thurston geometries (rendered using raymarching) in your browser.
  • Uniform Polychora — more three-dimensional spherical geometry.
  • our Virtual Crocheting — a demo in three-dimensional spherical geometry.

Non-Euclidean games in development

  • Hypermine — this is a Minecraft-like in three-dimensional hyperbolic space. The screenshots in the Gallery are quite impressive, and the development is progressing quite well!
  • HyperBlock — another Minecraft-like. The video linked shows H2xR geometry, i.e., a hyperbolic plane with the ‘z’ coordinate working in Euclidean way. Three-dimensional hyperbolic space will also be featured in HyperBlock.
  • Non-Euclidean billiards in VR — the idea of mapping a real right-angled square table to a hyperbolic right-angled pentagon, or spherical right-angled triangle, is very cool!
  • Spaceflux —the existing early-access version shows “fractal geometry”, but the plans in the kickstarter page mention hyperbolic geometry and even non-isotropic geometry (Solv).

Games in wrapped spaces

  • Asteroids (1979) — when you go through the east edge of the world, you appear on the west edge; similarly for north or west. This is a two-dimensional flat manifold without boundary (called a flat torus).
  • Pac-Man (1980) — like Asteroids. In most versions you can only go through the E-W edge but not through the N-S edge, making it a cylinder (a manifold with boundary).
  • Civilization (1991) — as mentioned above, the surface of a sphere is non-Euclidean. This is why it is impossible to make a flat map of Earth which does not distort anything. Unfortunately, most games taking place on a spherical planet do not take this non-Euclidean geometry into account; they take a flat map and pretend that this map has no distortions. Civilization is played on a cylinder (you cannot go through a pole, while in the real world, the shortest flight from Europe to Hawaii would go through the North pole). Some other games are played on flat tori, which is in some sense even more different from a sphere.
  • Manifold Garden (2019) — it uses the term “manifold” correctly. I have not played it yet, it seems to be mostly a three-dimensional flat torus (i.e., a three-dimensional flat manifold without boundary), but it has some portals too.
  • Tetrisphere (1997)— while the name and the presentation suggest that this game is spherical, it is actually just because of the projection it is using. (It is not possible to tile the sphere with squares, four meeting in every vertex.) Every level is a flat torus.

Games with portals

  • Portal (2007) — once you place some portals, the world becomes a manifold with boundary. There are also some 2D games using similar mechanics (Portal 2D; 7DRLs by Jeff Lait such as Jacob’s Matrix and Vicious Orcs).
  • Fragments of Euclid —a puzzle game in an Escheresque Euclidean manifold. Escheresque like in Escher’s Relativity or Another World: the directions are not consistent.
  • More interesting portals are possible too. What if the portal is knotted or linked? What if we send a portal through its other side? What if we make non-Euclidean portals (i.e. portals in some non-Euclidean space)? Can we make portals in the shape of Möbius strips? See this thread for some examples.

Games in impossible spaces

  • Antichamber — this game is probably responsible for popularizing the mathematically incorrect usage of the term “non-Euclidean”. This is mostly a Euclidean manifold (with boundary), but also exhibits some effects that would not happen in a manifold (e.g. you end up in a different place when you go some steps and back). I believe almost all the weird things in Antichamber could be (and probably have been) implemented with the teleportation trick desribed above.
  • AAAAXY —the idea here is a bit similar to Antichamber, but it is 2D.
  • Paradox Vector —a first-person shooter in an Escheresque Euclidean manifold. Escheresque like in Escher’s Relativity or Another World: the directions are not consistent.
  • Jet Set Willy (1984) —appears to be a normal platformer, but if you try to create a map, you learn that some things do not match correctly. Three rooms on the cellar level correspond to 9 rooms on the basement level, and 4 rooms on the top floor correspond to 6 rooms on the roof. (Vertical lines diverging makes it a bit similar to hyperbolic geometry.) See this for something related.
  • The VR game Tea for God (2020–2021) uses impossible spaces to simulate a large world using a small real-world space. A similar trick is also used in other VR games, e.g. Shattered Lights.

Recursive games

  • Maquette (2020) is a 3D example.
  • Mirror stage (2009) is a similar idea in 2D.
  • Patrick’s Parabox (2022) has some recursive aspects.
  • Sierpiński’s Tomb (2013) is a text game based on a similar idea.
  • Game inside a game is yet another one.
  • Spaceflux is similar, although we also become smaller and smaller as we go inside.
  • Super Hexagon and Infinite Pizza (2020) look a bit similar to Spaceflux, but they are not recursive —they do not repeat. It could be said that the gameplay in these games is Euclidean (there are two dimensions — angle and distance — which work in the Euclidean way), but rendered with a cool perspective.
  • It is also possible to have portals where one end is a square and the other end is a rectangle, causing the objects to be stretched by portals (see also my old demo based on a similar idea).
  • Fractality is also vaguely similar.
  • We could make this actually non-Euclidean by changing the metric — see non-Euclidean recursive house.

Other notable games which are geometrically weird

  • Four-dimensional games. Some people may think of these games as non-Euclidean, because four spatial dimensions would not fit in our three-dimensional world. However, a world which works just like our old three-dimensional Euclidean space, except that it has more dimensions, is still definitely Euclidean (according to definition). It is of course possible to have a four-dimensional non-Euclidean space, but at the time of writing, it appears that no game tried to implement this.
  • Perspective tricks, such as Fez, Echodrome, Monument Valley, Naya’s Quest, or Perspective. Superliminal has some perspective and “affine manifold”aspects. These games are weird and cool, but should not be called non-Euclidean either. I would call some of them Escheresque.
  • A Slower Speed of Light and Velocity Raptor are games based on Einstein’s special relativity theory (but where the speed of light is slower, making the relativistic effects more visible). Special relativity is based on Minkowski geometry, which is different from Euclidean geometry, and is related to hyperbolic geometry.

Related Videos

  • Geometry Center videos (1991) — Not Knot is a classic video featuring computer visualizations of non-Euclidean 3D geometry. (This video from 1977 without computer visualizations is also quite funny.)
  • Henry Segerman has lots of great videos on his channel (some are based on non-Euclidean geometry and some are not, but all are great). See e.g. non-euclidean virtual reality.
  • Most videos on our channel feature non-Euclidean geometry, some do weird things with topology too. Recently we have created some explanatory videos (Portals to non-Euclidean geometry featuring non-Euclidean geometry and portals, and Nil geometry explained! featuring Nil geometry and impossible triangles/staircases), but see all of them!
  • CodeParade has created a viral video Non-Euclidean Worlds engine — this starts with Circle Limit by M. C. Escher, which is indeed based on non-Euclidean (hyperbolic) geometry. However, the most of the video presents a plain old affine manifold with boundary. The later Hyperbolica dev blogs of course use non-Euclidean geometry, and are the most visually polished ones (Non-Euclidean geometry explained and Spherical geometry is stranger than hyperbolic).
  • The history of non-Euclidean geometry by Extra Credits explains the history of non-Euclidean geometry quite well.
  • “No! Euclid!” GPU Ray Tracer gets an upgrade! — this is quite interesting, because this is indeed a curved space, not based on surgery. (Although it is sad that quite a lot of cool videos/prototypes remain just videos/prototypes…)
  • In early 2021 we see an influx of “non-Euclidean Minecraft” videos. These videos are usually made with the “non-Euclidean Minecraft mod”, which is not an actual name of the mod, but rather they are using the Immersive Portals mod (which allows constructing portals and impossible spaces) and/or the Pekhui mod (which, in combination with Immersive Portals, allows constructing recursive spaces and similarity manifolds in general). It appears that they use the term “non-Euclidean” because of “non-Euclidean Worlds engine”, and because they think that they get more viewers this way (which does not seem to be actually true —lots of people are confused by this). Sometimes the youtubers clearly do not know what non-Euclidean means at all (for example, the only weird phenomenon is that the chickens are huge).




Mathematics, game development, art, roguelikes, hyperbolic geometry. Sometimes all at once.

Love podcasts or audiobooks? Learn on the go with our new app.

Recommended from Medium

What is a Reality Tunnel and What Happens When You Move It?

Chapter 1: Imagination — Birth of Robotics

Why study the humanities?

Life Is So Absurd

Why time is flying by?

what is a “radlib”?

2 quick methods - to develop your critical thinking.

Figure of a triangle describing in each corner: Logos, follow logic and reason. Pathos, credibility in values. And Ethos, credibility on someone or something.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
Zeno Rogue

Zeno Rogue

Mathematics, game development, art, roguelikes, hyperbolic geometry. Sometimes all at once.

More from Medium

Division Definition, Symbol, Examples

Exclusive: Physics of the Netflix “Dark” Series — Part 3

Representation of wormhole travel through space-time, the first path is the long way around the space-time surface, the second path is through the wormhole Stock photo.

The hidden math of slots